1887

Abstract

A pink, aerobic, facultatively methylotrophic, motile, Gram-negative rod, designated Gh-105, was isolated from the phyllosphere of cotton from Coimbatore (Tamilnadu, India). 16S rRNA gene sequence analysis showed clearly that the isolate belonged to the cluster. Strain Gh-105 was most closely related to AR27 (99 % 16S rRNA gene sequence similarity) and 5317S-33 (97.5 %). The isolate grew with C compounds such as methanol and dichloromethane, but not with formaldehyde, formate, methylamine, trimethylamine or methane, as sole carbon sources and carried , which encodes methanol dehydrogenase and supports methylotrophic metabolism. The major fatty acid was Cω7 and the G+C content of the genomic DNA was 64.2 mol%. Physiological and biochemical data and DNA–DNA relatedness with KACC 12195 and KACC 11765 revealed clear phenotypic and genotypic differences. For this reason, we propose that strain Gh-105 ( = CCM 7572  = NRRL B-51692) represents the type strain of a novel species, with the name sp. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.030148-0
2012-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/1/162.html?itemId=/content/journal/ijsem/10.1099/ijs.0.030148-0&mimeType=html&fmt=ahah

References

  1. Araújo W. L., Marcon J., Maccheroni W. Jr, Van Elsas J. D., Van Vuurde J. W., Azevedo J. L. 2002; Diversity of endophytic bacterial populations and their interaction with Xylella fastidiosa in citrus plants. Appl Environ Microbiol 68:4906–4914 [View Article][PubMed]
    [Google Scholar]
  2. Basile D. V., Basile M. R., Li Q. Y., Corpe W. A. 1985; Vitamin B12-stimulated growth and development of Jungermannia leiantha Grolle and Gymnocolea inflata (Huds.) Dum (Hepaticae). Bryologist 88:77–81 [View Article]
    [Google Scholar]
  3. Bozzola J. J., Russell L. D. 1998 Electron Microscopy, 2nd edn. Sudbury, MA: Jones & Bartlett;
    [Google Scholar]
  4. Chanprame S., Todd J. J., Widholm J. M. 1996; Prevention of pink-pigmented methylotrophic bacteria (Methylobacterium mesophilicum) contamination of plant tissue cultures. Plant Cell Rep 16:222–225 [View Article]
    [Google Scholar]
  5. Chun J., Lee J.-H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y.-W. 2007; EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261 [View Article][PubMed]
    [Google Scholar]
  6. Corpe W. A., Rheem S. 1989; Ecology of the methylotrophic bacteria on living leaf surfaces. FEMS Microbiol Ecol 62:243–249 [View Article]
    [Google Scholar]
  7. Doronina N. V., Trotsenko Y. A., Tourova T. P., Kuznetsov B. B., Leisinger T. 2000; Methylopila helvetica sp. nov. and Methylobacterium dichloromethanicum sp. nov. – novel aerobic facultatively methylotrophic bacteria utilizing dichloromethane. Syst Appl Microbiol 23:210–218 [View Article][PubMed]
    [Google Scholar]
  8. Gerhardt P. R., Murray R. G. E., Wood W. A., Krieg N. R. (editors) 1994 Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  9. Green P. N. 1992; The genus Methylobacterium . In The Prokaryotes, 2nd edn. pp. 2342–2349 Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H. New York: Springer;
    [Google Scholar]
  10. Green P. N., Bousfield I. J. 1982; A taxonomic study of some Gram-negative facultatively methylotrophic bacteria. J Gen Microbiol 128:623–638
    [Google Scholar]
  11. Green P. N., Bousfield I. J. 1983; Emendation of Methylobacterium Patt, Cole, and Hanson 1976; Methylobacterium rhodinum (Heumann 1962) comb. nov. corrig.; Methylobacterium radiotolerans (Ito and Iizuka 1971) comb. nov. corrig.; and Methylobacterium mesophilicum (Austin and Goodfellow 1979) comb. nov.. Int J Syst Bacteriol 33:875–877 [View Article]
    [Google Scholar]
  12. Holland M. A., Polacco J. C. 1992; Urease-null and hydrogenase-null phenotypes of a phylloplane bacterium reveal altered nickel metabolism in two soybean mutants. Plant Physiol 98:942–948 [View Article][PubMed]
    [Google Scholar]
  13. Hüve K., Christ M. M., Kleist E., Uerlings R., Niinemets Ü., Walter A., Wildt J. 2007; Simultaneous growth and emission measurements demonstrate an interactive control of methanol release by leaf expansion and stomata. J Exp Bot 58:1783–1793 [View Article][PubMed]
    [Google Scholar]
  14. Idris R., Trifonova R., Puschenreiter M., Wenzel W. W., Sessitsch A. 2004; Bacterial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense . Appl Environ Microbiol 70:2667–2677 [View Article][PubMed]
    [Google Scholar]
  15. Jackson E. F., Echlin H. L., Jackson C. R. 2006; Changes in the phyllosphere community of the resurrection fern, Polypodium polypodioides, associated with rainfall and wetting. FEMS Microbiol Ecol 58:236–246 [View Article][PubMed]
    [Google Scholar]
  16. Kang Y.-S., Kim J.-H., Shin H.-D., Nam Y.-D., Bae J.-W., Jeon C.-O., Park W.-J. 2007; Methylobacterium platani sp. nov., isolated from a leaf of the tree Platanus orientalis . Int J Syst Evol Microbiol 57:2849–2853 [View Article][PubMed]
    [Google Scholar]
  17. Koenig R. L., Morris R. O., Polacco J. C. 2002; tRNA is the source of low-level trans-zeatin production in Methylobacterium spp.. J Bacteriol 184:1832–1842 [View Article][PubMed]
    [Google Scholar]
  18. Komagata K., Suzuki K. 1987; Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–207 [View Article]
    [Google Scholar]
  19. Kutschera U. 2007; Plant-associated methylobacteria as co-evolved phytosymbionts: a hypothesis. Plant Signal Behav 2:74–78 [View Article][PubMed]
    [Google Scholar]
  20. Lacava P. T., Araújo W. L., Marcon J., Maccheroni W. Jr, Azevedo J. L. 2004; Interaction between endophytic bacteria from citrus plants and the phytopathogenic bacteria Xylella fastidiosa, causal agent of citrus-variegated chlorosis. Lett Appl Microbiol 39:55–59 [View Article][PubMed]
    [Google Scholar]
  21. Madhaiyan M., Poonguzhali S., Ryu J.-H., Sa T.-M. 2006; Regulation of ethylene levels in canola (Brassica campestris) by 1-aminocyclopropane-1-carboxylate deaminase-containing Methylobacterium fujisawaense . Planta 224:268–278 [View Article][PubMed]
    [Google Scholar]
  22. Madhaiyan M., Poonguzhali S., Sa T. M. 2007a; Metal tolerating methylotrophic bacteria reduces nickel and cadmium toxicity and promotes plant growth of tomato (Lycopersicon esculentum L.). Chemosphere 69:220–228 [View Article][PubMed]
    [Google Scholar]
  23. Madhaiyan M., Poonguzhali S., Sa T. M. 2007b; Characterization of 1-aminocyclopropane-1-carboxylate (ACC) deaminase containing Methylobacterium oryzae and interactions with auxins and ACC regulation of ethylene in canola (Brassica campestris). Planta 226:867–876 [View Article][PubMed]
    [Google Scholar]
  24. Madhaiyan M., Kim B.-Y., Poonguzhali S., Kwon S.-W., Song M.-H., Ryu J.-H., Go S.-J., Koo B.-S., Sa T.-M. 2007c; Methylobacterium oryzae sp. nov., an aerobic, pink-pigmented, facultatively methylotrophic, 1-aminocyclopropane-1-carboxylate deaminase-producing bacterium isolated from rice. Int J Syst Evol Microbiol 57:326–331 [View Article][PubMed]
    [Google Scholar]
  25. Madhaiyan M., Poonguzhali S., Kwon S.-W., Sa T.-M. 2009; Methylobacterium phyllosphaerae sp. nov., a pink-pigmented, facultative methylotroph from the phyllosphere of rice. Int J Syst Evol Microbiol 59:22–27 [View Article][PubMed]
    [Google Scholar]
  26. McDonald I. R., Murrell J. C. 1997; The methanol dehydrogenase structural gene mxaF and its use as a functional gene probe for methanotrophs and methylotrophs. Appl Environ Microbiol 63:3218–3224[PubMed]
    [Google Scholar]
  27. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [View Article]
    [Google Scholar]
  28. Nemecek-Marshall M., MacDonald R. C., Franzen J. J., Wojciechowski C. L., Fall R. 1995; Methanol emission from leaves: enzymatic detection of gas-phase methanol and relation of methanol fluxes to stomatal conductance and leaf development. Plant Physiol 108:1359–1368[PubMed]
    [Google Scholar]
  29. Patt T. E., Cole G. C., Hanson R. S. 1976; Methylobacterium, a new genus of facultatively methylotrophic bacteria. Int J Syst Bacteriol 26:226–229 [View Article]
    [Google Scholar]
  30. Pirttilä A. M., Laukkanen H., Pospiech H., Myllylä R., Hohtola A. 2000; Detection of intracellular bacteria in the buds of Scotch pine (Pinus sylvestris L.) by in situ hybridization. Appl Environ Microbiol 66:3073–3077 [View Article][PubMed]
    [Google Scholar]
  31. Poonguzhali S., Madhaiyan M., Yim W.-J., Kim K.-A., Sa T.-M. 2008; Colonization pattern of plant root and leaf surfaces visualized by use of green-fluorescent-marked strain of Methylobacterium suomiense and its persistence in rhizosphere. Appl Microbiol Biotechnol 78:1033–1043 [View Article][PubMed]
    [Google Scholar]
  32. Sasser M. 1990; Identification of bacteria through fatty acid analysis. In Methods in Phytobacteriology pp. 199–204 Edited by Klement S., Rudolf K., Sands D. Budapest: Akademiai Kiado;
    [Google Scholar]
  33. Schauer S., Kutschera U. 2008; Methylotrophic bacteria on the surfaces of field-grown sunflower plants: a biogeographic perspective. Theory Biosci 127:23–29 [View Article][PubMed]
    [Google Scholar]
  34. Seldin L., Dubnau D. 1985; Deoxyribonucleic acid homology among Bacillus polymyxa, Bacillus macerans, Bacillus azotofixans, and other nitrogen-fixing Bacillus strains. Int J Syst Bacteriol 35:151–154 [View Article]
    [Google Scholar]
  35. Sy A., Giraud E., Jourand P., Garcia N., Willems A., de Lajudie P., Prin Y., Neyra M., Gillis M. other authors 2001; Methylotrophic Methylobacterium bacteria nodulate and fix nitrogen in symbiosis with legumes. J Bacteriol 183:214–220 [View Article][PubMed]
    [Google Scholar]
  36. Sy A., Timmers A. C. J., Knief C., Vorholt J. A. 2005; Methylotrophic metabolism is advantageous for Methylobacterium extorquens during colonization of Medicago truncatula under competitive conditions. Appl Environ Microbiol 71:7245–7252 [View Article][PubMed]
    [Google Scholar]
  37. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [View Article][PubMed]
    [Google Scholar]
  38. Trotsenko Y. A., Ivanova E. G., Doronina N. V. 2001; [Aerobic methylotrophic bacteria as phytosymbionts]. Mikrobiologiia 70:623–632 (in Russian)
    [Google Scholar]
  39. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [View Article]
    [Google Scholar]
  40. Weon H.-Y., Kim B.-Y., Joa J.-H., Son J.-A., Song M.-H., Kwon S.-W., Go S.-J., Yoon S.-H. 2008; Methylobacterium iners sp. nov. and Methylobacterium aerolatum sp. nov., isolated from air samples in Korea. Int J Syst Evol Microbiol 58:93–96 [View Article][PubMed]
    [Google Scholar]
  41. Whittenbury R., Phillips K. C., Wilkinson J. F. 1970; Enrichment, isolation and some properties of methane-utilizing bacteria. J Gen Microbiol 61:205–218[PubMed] [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.030148-0
Loading
/content/journal/ijsem/10.1099/ijs.0.030148-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error