Skip to main content
Log in

Improved methods for detecting Xylella fastidiosa in pecan and related Carya species

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Pecan bacterial leaf scorch (PBLS), caused by Xylella fastidiosa has been reported in Georgia, Louisiana, Texas, New Mexico, Arizona, and California. Accurate methods are critical for the early detection of X. fastidiosa, but the validation of current diagnostic tools for pecan has yet to be investigated. Collected petioles, leaflets, and shoots from pecan and other Carya relatives in Texas, Indiana, and Georgia were used as tissue samples, and to isolate crude xylem sap and gDNA for side-by-side testing using immunological (ELISA) and molecular-based assays [traditional PCR and real-time quantitative PCR (qPCR)]. Isolated crude sap was found to be the most reliable template for ELISA diagnostics. X. fastidiosa-specific genes were amplified with previously published PCR primer sets; however, they revealed non-specific binding. New Xylella-specific primers were subsequently generated and validated using infected tissue from pecan and related Carya species. Two new primer sets (NMU3 and 5) produced expected amplicons specific to X. fastidiosa but did not amplify any non-specific bands of the pecan gDNA. When compared to that of total gDNA as the template in PCR reactions, diluted crude sap was found to be an efficient way to detect X. fastidiosa in pecan petioles. A novel TaqMan qPCR assay was also developed for the detection of X. fastidiosa. The results of the qPCR experiments were equivalent to the traditional PCR amplification when crude sap was used as the template. Comparative PCR analysis confirms that the PCR protocol outlined in this study can be replicated across different laboratories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Baldi, P., & La Porta, N. (2017). Xylella fastidiosa: Host range and advances in molecular identification techniques. Frontiers in Plant Science, 8, 944. https://doi.org/10.3389/fpls.2017.00944.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bextine, B. R., & Miller, T. A. (2004). Comparison of whole-tissue and xylem fluid collection techniques to detect Xylella fastidiosa in grapevine and oleander. Plant Disease, 88(6), 600–604. https://doi.org/10.1094/pdis.2004.88.6.600.

    Article  PubMed  Google Scholar 

  • Bock, C. H., Chen, C., Hotchkiss, M. W., Wang, X., Grauke, L. J., Hilton, A. E., et al. (2018). Pecan bacterial leaf scorch, caused by Xylella fastidiosa, is endemic in Georgia pecan orchards. Plant Health Progress, 19(4), 284–287.

    Article  Google Scholar 

  • Carbajal, D., Morano, K. A., & Morano, L. D. (2004). Indirect immunofluorescence microscopy for direct detection of Xylella fastidiosa in xylem sap. Current Microbiology, 49(5), 372–375. https://doi.org/10.1007/s00284-004-4369-5.

    Article  CAS  PubMed  Google Scholar 

  • Chen, C., Bock, C. H., & Brannen, P. M. (2019). Novel primers and sampling for PCR detection of Xylella fastidiosa in peach. Phytopathology, 109(2), 307–317.

    Article  CAS  Google Scholar 

  • Chen, J., Su, C., Deng, W., Jan, F., Chang, C., & Huang, H. Analyses of Xylella whole genome sequences and proposal of Xylella taiwanensis sp. nov. In CDFA Pierce’s Disease Control Program Research Symposium, 2014 (pp. 92).

  • Deb, S. K., Sharma, P., Shukla, M. K., Sammis, T. W., & Ashigh, J. (2013). Drip-irrigated pecan seedlings response to irrigation water salinity. HortScience, 48(12), 1548–1555.

    Article  CAS  Google Scholar 

  • Demeke, T., & Jenkins, G. R. (2010). Influence of DNA extraction methods, PCR inhibitors and quantification methods on real-time PCR assay of biotechnology-derived traits. Analytical and Bioanalytical Chemistry, 396(6), 1977–1990.

    Article  CAS  Google Scholar 

  • Edgar, R. C. (2004). MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32(5), 1792–1797. https://doi.org/10.1093/nar/gkh340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Francis, M., Lin, H., Cabrera-La Rosa, J., Doddapaneni, H., & Civerolo, E. L. (2006). Genome-based PCR primers for specific and sensitive detection and quantification of Xylella fastidiosa. European Journal of Plant Pathology, 115(2), 203–213.

    Article  CAS  Google Scholar 

  • Grauke, L., Wood, B. W., & Harris, M. K. (2016). Crop vulnerability: Carya. HortScience, 51(6), 653–663.

    Article  Google Scholar 

  • Hernandez-Martinez, R., Cooksey, D., & Wong, F. (2009). Leaf scorch of purple-leafed plum and sweetgum dieback: Two new diseases in southern California caused by Xylella fastidiosa strains with different host ranges. Plant Disease, 93(11), 1131–1138.

    Article  CAS  Google Scholar 

  • Hilton, A. E., Jo, Y. K., Cervantes, K., Stamler, R. A., Randall, J. J., French, J. M., Heerema, R. J., Goldberg, N. P., Sherman, J., Wang, X., & Grauke, L. J. (2017). First report of pecan bacterial leaf scorch caused by Xylella fastidiosa in pecan (Carya illinoinensis) in Arizona, New Mexico, California, and Texas. Plant Disease, 101(11), 1949–1949.

    Article  Google Scholar 

  • Hopkins, D. (1989). Xylella fastidiosa: Xylem-limited bacterial pathogen of plants. Annual Review of Phytopathology, 27(1), 271–290.

    Article  Google Scholar 

  • Hopkins, D., & Purcell, A. (2002). Xylella fastidiosa: Cause of Pierce's disease of grapevine and other emergent diseases. Plant Disease, 86(10), 1056–1066.

    Article  CAS  Google Scholar 

  • Jenkins, J., Wilson, B., Grimwood, J., Schmutz, J., & Grauke, L. Towards a reference pecan genome sequence. In International Symposium on Pecans and Other Carya in Indigenous and Managed Systems, 2013 (pp. 101–108).

  • Kays, S., & Payne, J. (1982). Analysis of physical and chemical parameters of the shells of pecan genotypes in reference to the production of phenolic plastics and resins. HortScience, 27, 978–980.

    Google Scholar 

  • Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Meintjes, P., & Drummond, A. (2012). Geneious basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28(12), 1647–1649. https://doi.org/10.1093/bioinformatics/bts199.

    Article  PubMed  PubMed Central  Google Scholar 

  • Krugner, R., Sisterson, M. S., Chen, J., Stenger, D. C., & Johnson, M. W. (2014). Evaluation of olive as a host of Xylella fastidiosa and associated sharpshooter vectors. Plant Disease, 98(9), 1186–1193. https://doi.org/10.1094/pdis-01-14-0014-re.

    Article  PubMed  Google Scholar 

  • Latham, A., Bowen, K., & Campbell, H. (1995). Occurrence of Glomerella cingulata in pecan nut shucks and its association with fungal leaf scorch. Plant Disease, 79(2), 182–185.

    Article  Google Scholar 

  • Lazarotto, M., Milanesi, P., Muniz, M., Reiniger, L., Beltrame, R., Harakava, R., et al. (2014). Morphological and molecular characterization of Fusarium spp pathogenic to pecan tree in Brazil. Genetics and Molecular Research, 13(4), 9390–9402.

    Article  CAS  Google Scholar 

  • Levi, A., Galau, G. A., & Wetzstein, H. Y. (1992). A rapid procedure for the isolation of RNA from high-phenolic-containing tissues of pecan. HortScience, 27(12), 1316–1318.

    Article  CAS  Google Scholar 

  • McGraw, G. W., Rials, T. G., Steynberg, J. P., & Hemingway, R. W. (1992). Chemistry of pecan tannins and analysis of cure of pecan tannin-based cold-setting adhesives with a DMA ‘micro-beam’ test. In Plant Polyphenols (pp. 979-990): Springer.

  • Melanson, R., Sanderlin, R., McTaggart, A., & Ham, J. (2012). A systematic study reveals that Xylella fastidiosa strains from pecan are part of X. fastidiosa subsp. multiplex. Plant Disease, 96(8), 1123–1134.

    Article  CAS  Google Scholar 

  • Minsavage, G., Thompson, C., Hopkins, D., Leite, R., & Stall, R. (1994). Development of a polymerase chain reaction protocol for detection of Xylella fastidiosa in plant tissue. Phytopathology, 84(5), 456–461.

    Article  CAS  Google Scholar 

  • National Agriculture Statistics Service N (2018). Crop production. In S. USDA Economics, and Market Information System (Ed.).

  • Nunney, L., Schuenzel, E. L., Scally, M., Bromley, R. E., & Stouthamer, R. (2014). Large-scale intersubspecific recombination in the plant pathogenic bacterium Xylella fastidiosa is associated with the host shift to mulberry. Applied and Environmental Microbiology, 80(10), 3025–3033. https://doi.org/10.1128/aem.04112-13.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nunney, L., Vickerman, D. B., Bromley, R. E., Russell, S. A., Hartman, J. R., Morano, L. D., & Stouthamer, R. (2013). Recent evolutionary radiation and host plant specialization in the Xylella fastidiosa subspecies native to the United States. Applied and Environmental Microbiology, 79(7), 2189–2200. https://doi.org/10.1128/aem.03208-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pierce, W. C. (1953). Studies of mites and their control on pecan in Louisiana. Journal of Economic Entomology, 46(4), 561–565. https://doi.org/10.1093/jee/46.4.561.

    Article  Google Scholar 

  • Pooler, M. R., & Hartung, J. S. (1995). Specific PCR detection and identification of Xylella fastidiosa strains causing citrus variegated chlorosis. Current Microbiology, 31(6), 377–381.

    Article  CAS  Google Scholar 

  • Purcell, A., Saunders, S., Hendson, M., Grebus, M., & Henry, M. (1999). Causal role of Xylella fastidiosa in oleander leaf scorch disease. Phytopathology, 89(1), 53–58.

    Article  CAS  Google Scholar 

  • Randall, J. J., Goldberg, N. P., Kemp, J. D., Radionenko, M., French, J. M., Olsen, M. W., & Hanson, S. F. (2009). Genetic analysis of a novel Xylella fastidiosa subspecies found in the southwestern United States. Applied and Environmental Microbiology, 75(17), 5631–5638.

    Article  CAS  Google Scholar 

  • Rodrigues, J. L., Silva-Stenico, M., Gomes, J., Lopes, J., & Tsai, S. (2003). Detection and diversity assessment of Xylella fastidiosa in field-collected plant and insect samples by using 16S rRNA and gyrB sequences. Applied and Environmental Microbiology, 69(7), 4249–4255.

    Article  Google Scholar 

  • Sanderlin, R. (2005). Cultivar and seedling susceptibility to pecan bacterial leaf scorch caused by Xylella fastidiosa and graft transmission of the pathogen. Plant Disease, 89(5), 446–449.

    Article  CAS  Google Scholar 

  • Sanderlin, R. (2017). Host specificity of pecan strains of Xylella fastidiosa subsp. multiplex. Plant Disease, 101(5), 744–750.

    Article  CAS  Google Scholar 

  • Sanderlin, R., & Heyderich-Alger, K. (2000). Evidence that Xylella fastidiosa can cause leaf scorch disease of pecan. Plant Disease, 84(12), 1282–1286.

    Article  CAS  Google Scholar 

  • Sanderlin, R., & Heyderich-Alger, K. (2003). Effects of pecan bacterial leaf scorch on growth and yield components of cultivar cape fear. Plant Disease, 87(3), 259–262.

    Article  CAS  Google Scholar 

  • Sanderlin, R., & Melanson, R. (2006). Transmission of Xylella fastidiosa through pecan rootstock. HortScience, 41(6), 1455–1456.

    Article  Google Scholar 

  • Sanderlin, R., & Melanson, R. (2008). Reduction of Xylella fastidiosa transmission through pecan scion wood by hot-water treatment. Plant Disease, 92(7), 1124–1126.

    Article  CAS  Google Scholar 

  • Sanderlin, R., & Melanson, R. (2010). Insect transmission of Xylella fastidiosa to pecan. Plant Disease, 94(4), 465–470.

    Article  CAS  Google Scholar 

  • Sanderlin, R. S. (2015). Susceptibility of some common pecan rootstocks to infection by Xylella fastidiosa. HortScience, 50(8), 1183–1186.

    Article  Google Scholar 

  • Schaad, N. W., & Frederick, R. D. (2002). Real-time PCR and its application for rapid plant disease diagnostics. Canadian Journal of Plant Pathology, 24(3), 250–258.

    Article  CAS  Google Scholar 

  • Schaad, N. W., Frederick, R. D., Shaw, J., Schneider, W. L., Hickson, R., Petrillo, M. D., & Luster, D. G. (2003). Advances in molecular-based diagnostics in meeting crop biosecurity and phytosanitary issues. Annual Review of Phytopathology, 41(1), 305–324.

    Article  CAS  Google Scholar 

  • Schaad, N. W., Postnikova, E., Lacy, G., Fatmi, M., & Chang, C. J. (2004). Xylella fastidiosa subspecies: X. fastidiosa subsp. [correction] fastidiosa [correction] subsp. nov., X. fastidiosa subsp. multiplex subsp. nov., and X. fastidiosa subsp. pauca subsp. nov. Systematic and Applied Microbiology, 27(3), 290–300.

    Article  CAS  Google Scholar 

  • Scholander, P. F., Bradstreet, E. D., Hemmingsen, E., & Hammel, H. (1965). Sap pressure in vascular plants: Negative hydrostatic pressure can be measured in plants. Science, 148(3668), 339–346.

    Article  CAS  Google Scholar 

  • Steinitz, M. (2000). Quantitation of the blocking effect of tween 20 and bovine serum albumin in ELISA microwells. Analytical Biochemistry, 282(2), 232–238. https://doi.org/10.1006/abio.2000.4602.

  • Su, C. C., Chang, C. J., Yang, W. J., Hsu, S. T., Tzeng, K. C., Jan, F. J., & Deng, W. L. (2012). Specific characters of 16S rRNA gene and 16S–23S rRNA internal transcribed spacer sequences of Xylella fastidiosa pear leaf scorch strains. European Journal of Plant Pathology, 132(2), 203–216.

    Article  Google Scholar 

  • Wakeling, L. T., Mason, R. L., D'Arc, B. R., & Caffin, N. A. (2001). Composition of pecan cultivars Wichita and western Schley [Carya illinoinensis (Wangenh.) K. Koch] grown in Australia. Journal of Agricultural and Food Chemistry, 49(3), 1277–1281.

    Article  CAS  Google Scholar 

  • Weller, S. A., & Stead, D. E. (2002). Detection of root mat associated Agrobacterium strains from plant material and other sample types by post-enrichment TaqMan PCR. Journal of Applied Microbiology, 92(1), 118–126. https://doi.org/10.1046/j.1365-2672.2002.01506.x.

    Article  CAS  PubMed  Google Scholar 

  • Wetzstein, H., & Sparks, D. (1983). Anatomical indices of cultivar and age-related scab resistance and susceptibility in pecan leaves [Cladosporium caryigenum]. Journal American Society for Horticultural Science, 108, 210–218.

    Google Scholar 

  • Wood, B. W., Conner, P. J., & Worley, R. E. Insight into alternate bearing of pecan. In XXVI International Horticultural Congress: Key Processes in the Growth and Cropping of Deciduous Fruit and Nut Trees 636, 2002 (pp. 617–629).

  • Wood, B. W., Payne, J. A., & Grauke, L. J. (1990). The rise of the US pecan industry. HortScience, 25(6), 594–723.

    Article  Google Scholar 

  • Worley, R. E. (1990). Pecan leaf scorch in response to various combinations of nitrogen and potassium fertilization. HortScience, 25(4), 422–423.

    Article  Google Scholar 

  • Xiao, Y., & Isaacs, S. N. (2012). Enzyme-linked immunosorbent assay (ELISA) and blocking with bovine serum albumin (BSA)--not all BSAs are alike. Journal of Immunological Methods, 384(1–2), 148–151. https://doi.org/10.1016/j.jim.2012.06.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, R., Peng, F., & Li, Y. (2015). Pecan production in China. Scientia Horticulturae, 197, 719–727.

    Article  Google Scholar 

Download references

Acknowledgments

This article reports the results of research only. Mention of a trademark or proprietary product is solely for the purpose of providing specific information and does not constitute a guarantee or warranty of the product by the US Department of Agriculture or Texas A&M AgriLife Extension and does not imply its approval to the exclusion of other products that may also be suitable.

Funding

This work was supported by USDA-ARS CRIS 3091–21000-042-00D “Management of the National Collection of Carya Genetic Resources and Associated Information”; USDA-ARS CRIS 6042–21220–012-00-D “Mitigating Alternate Bearing of Pecan”; National Plant Germplasm System Grant 58–3091–6-022 “Screening Xylella fastidiosa in the USDA ARS National Collection of Genetic Resources for Carya”; and the Southern Integrative Pest Management (IPM) Center Program (project #1702922).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinwang Wang or Young-Ki Jo.

Ethics declarations

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be constructed as a potential conflict of interest. This research did not involve human participants or animals.

Electronic supplementary material

Fig11

Supp. Figure 1 Optimization of annealing temperature for PCR amplification using previously designed primers. The three previously designed Xylella fastidiosa-specific primer sets, S-S-X.fas-0838-a-S-21/ S-S-X.fas-1439-a-A-19, RST31/RST33 and HL-5/HL-6 were used to amplify X. fastidiosa target DNA. Three gDNA samples were isolated from three different petioles of a pecan tree (cv. Cape Fear), where the presence of X. fastidiosa was confirmed. Three different annealing temperatures, 55 °C, 58 °C, and 60 °C, are compared for PCR yield and specificity. Amplicons were separated on a 1.5% agarose gel stained with ethidium bromide. Arrows point to the X. fastidiosa amplicon. M = O’GeneRuler Express Ladder, + = positive control (gDNA of X. fastidiosa subsp. multiplex), − = non-template control (nuclease-free dH2O). (PNG 1346 kb)

High Resolution Image (TIF 344 kb)

Fig12

Supp. Figure 2 The NMU3 primer set was validated for specificity by screening against the purified DNA of 13 bacterial isolates different from Xylella fastidiosa. A PCR screen using the NMU3 primer set against 13 bacterial isolates did not result in non-specific bands, indicating this primer set has a high specificity to X. fastidiosa. Arrows point to X. fastidiosa amplicon. M = Low Range GeneRuler DNA Ladder, + = positive control (gDNA of X. fastidiosa), − = non-template control (nuclease-free dH2O). (PNG 1138 kb)

High Resolution Image (TIF 280 kb)

ESM 3

Alignment of HL (hypothetical protein) gene of Xylella fastidiosa isolates used in this study. (XLSX 26 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hilton, A., Wang, X., Zhang, M. et al. Improved methods for detecting Xylella fastidiosa in pecan and related Carya species. Eur J Plant Pathol 157, 899–918 (2020). https://doi.org/10.1007/s10658-020-02050-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-020-02050-5

Keywords

Navigation