Improved Bioassay of Xylella fastidiosa using Nicotiana tabacum cultivar SR1
Authors
Description
Readily transformable Nicotiana tabacum cv. SR1 (Petite Havana) was evaluated as a host for the bioassay of Xylella fastidiosa strains. Plant growing conditions and inoculation methods were optimized to enhance symptom expression 4 to 6 weeks post inoculation. Tobacco plants were inoculated with X. fastidiosa strains associated with almond leaf scorch disease (ALSD) and Pierce's disease (PD) of grapevine in California. All PD strains and the ALSD strain Dixon caused characteristic leaf scorch symptoms, whereas two other ALSD-associated strains (M12 and M23) caused severe leaf chlorosis followed by necrosis, leaf death, and drooping of older leaves. Symptoms began to develop 10 to 14 days post inoculation and proceeded to resemble those of X. fastidiosa-infected grape and almond. The presence of X. fastidiosa in affected plants was confirmed by reisolation of the pathogen, enzyme-linked immumosorbent assay, quantitative polymerase chain reaction (QPCR), and observation of X. fastidiosa cells by transmission and scanning electron microscopy, as well as by confocal laser scanning microscopy, in the xylem cells of inoculated plants. The pathogenicity of selected reisolated strains was confirmed by inoculation of grape plants in the greenhouse. The average levels of X. fastidiosa cells/g of tissue, estimated by QPCR, were higher for PD strains than for ALSD strains and reflected the relative titers of these strains in economic hosts. No symptoms were observed and bacteria were not detected in untreated tobacco or in tobacco inoculated with Xanthomonas campestris pv. campestris or water. Symptoms induced by Xylella fastidiosa in this bioassay were fully expressed within 2 months following inoculation. The described bioassay, Linder optimized environmental conditions, provides a useful system for studying X. fastidiosa strains (e.g., confirmation of pathogenicity and differentiation of PD and ALSD pathotypes) and for investigating X. fastidiosa - host interactions. N. tabacum cv. SR1 tobacco was a better bioassay host for X. fastidioso than N. tabacum cvs. Havana, RP1, and TNN described previously.