Role of rpfF in Virulence and Exoenzyme Production of Xanthomonas axonopodis pv. glycines, the Causal Agent of Bacterial Pustule of Soybean
Description
Ten strains of Xanthomonas axonopodis pv. glycines, the causal agent of bacterial pustule of soybean, which were isolated from various soybean growing regions of Thailand, produced an extracellular diffusible factor (DSF) related to a well-characterized quorum sensing molecule produced by other Xanthomonas spp. Genomic DNA of the 10 strains of X. axonopodis pv. glycines contained rpfF, a gene encoding for the biosynthesis of the DSF in X. campestris pv. campestris. The rpfF gene from one strain of X. axonopodis pv. glycines was fully sequenced, and the 289 aa product is closely related to RpfF of other Xanthomonas spp. (95 to 98% identical). Three independently generated rpfF mutants of X. axonopodis pv. glycines strain No12-2 were defective in the production of a DSF, as expected if rpfF encodes for DSF biosynthesis in X. axonopodis pv. glycines. The rpfF mutants of X. axonopodis pv. glycines exhibited reduced virulence on soybean and produced less than wild-type levels of extracellular polysaccharide and the extracellular enzymes carboxylmethylcellulase, protease, endo-beta-1,4-mannanase, and pectate lyase. Transcripts for three genes that encode for the extracellular enzymes protease. endoglucanase, and pectate lyase were at lower abundance in an rpfF mutant than in the parental strain of X. axonopodis pv. glycines. These results indicate that X. axonopodis pv. glycines produces a diffusible signal related to the DSF of X. campestris pv. campestris, which contributes to virulence and exoenzyme production by this phytopathogenic bacterium.