Characterization of Direct Current-Electrical Penetration Graph Waveforms and Correlation With the Probing Behavior of Matsumuratettix hiroglyphicus (Hemiptera: Cicadellidae), the Insect Vector of Sugarcane White Leaf Phytoplasma

Text - scientific article/review article

Description

The leafhopper Matsumuratettix hiroglyphicus (Matsumura) (Hemiptera: Cicadellidae) is an important vector of phytoplasma causing white leaf disease in sugarcane. Thus, the aim of our study was to understand and describe the stylet-probing activities of this vector while feeding on sugarcane plants, by using direct current (DC) electrical penetration graph (EPG) monitoring. The EPG signals were classified into six distinct waveforms, according to amplitude, frequency, voltage level, and electrical origin of the observed traces during stylet penetration into the host plant tissues (probing). These six EPG waveforms of probing behavior comprise no stylet penetration (NP); stylet pathway through epidermis, mesophyll, and parenchymal cells (waveform A); contact at the bundle sheath layer (waveform B); salivation into phloem sieve elements (waveform C); phloem sap ingestion (waveform D); and short ingestion time of xylemsap (waveform E). The above waveformpatterns were correlated with histological data of salivary sheath termini in plant tissue generated from insect stylet tips. The key findings of this study were that M. hiroglyphicus ingests the phloem sap at a relatively higher rate and for longer duration from any other cell type, suggesting that M. hiroglyphicus is mainly a phloem-feeder. Quantitative comparison of probing behavior revealed that females typically probe more frequently and longer in the phloem than males. Thus, females may acquire and inoculate greater amounts of phytoplasma than males, enhancing the efficiency of phytoplasma transmission and potentially exacerbating disease spreading. Overall, our study provides basic information on the probing behavior and transmission mechanism of M. hiroglyphicus.

License

no licence specified -

Organisms

  • Xylella fastidiosa