Detection and differentiation of Xylella fastidiosa strains acquired and retained by glassy-winged sharpshooters (Hemiptera : Cicadellidae) using a mixture of strain-specific primer sets

Text - scientific article/review article

Description

Xytella fastidiosa Wells is a bacterial pathogen that causes a variety of plant diseases, including Pierce's disease (PD) of grapevine, almond leaf scorch, alfalfa dwarf, citrus variegated chlorosis, and oleander leaf scorch (OLS). Numerous strains of this pathogen have been genetically characterized, and several different strains occur in the United States. The dominant vector in southern California is the glassy-winged sharpshooter, Homalodisca coagulata (Say) (Hemiptera: Cicadellidae). The high mobility of this insect, and its use of large numbers of host plant species, provides this vector with ample exposure to multiple strains of X.fastidiosa during its lifetime. To learn more about the ability of this vector to acquire, retain, and transmit multiple strains of the pathogen, we developed a polymerase chain reaction (PCR)-based method to detect and differentiate strains of X. fastidiosa present in individual glassy-winged sharpshooter adults. Insects were sequentially exposed to plants infected with a PD strain in grapevine and an OLS strain in oleander. After sequential exposure, a few insects tested positive for both strains (7%); however, in most cases individuals tested positive for only one strain (29% PD, 41% OLS). In transmission studies, individual adults transmitted either the PD or OLS strain of the pathogen at a rate (39%) similar to that previously reported after exposure to a single strain, but no single individual transmitted both strains of the pathogen. PD and OLS strains of X. fastidiosa remained detectable in glassy-winged sharpshooter, even when insects were fed on a plant species that was not a host of the strain for 1 wk.

License

no licence specified -

Organisms

  • Xylella fastidiosa