Discrimination of mesophilic and thermophilic proteins using machine learning algorithms

Text - scientific article/review article


Discriminating thermophilic proteins from their mesophilic counterparts is a challenging task and it would help to design stable proteins. In this work, we have systematically analyzed the amino acid compositions of 3075 mesophilic and 1609 thermophilic proteins belonging to 9 and 15 families, respectively. We found that the charged residues Lys, Arg, and Glu as well as the hydrophobic residues, Val and Ile have higher occurrence in thermophiles than mesophiles. Further, we have analyzed the performance of different methods, based on Bayes rules, logistic functions, neural networks, support vector machines, decision trees and so forth for discriminating mesophilic and thermophilic proteins. We found that most of the machine learning techniques discriminate these classes of proteins with similar accuracy. The neural network-based method could discriminate the thermophiles from mesophiles at the five-fold cross-validation accuracy of 89% in a dataset of 4684 proteins. Moreover, this method is tested with 325 mesophiles in Xylella fastidosa and 382 thermophiles in Aquifex aeolicus and it could successfully discriminate them with the accuracy of 91%. These accuracy levels are better than other methods in the literature and we suggest that this method could be effectively used to discriminate mesophilic and thermophilic proteins.


no licence specified -


  • Xylella fastidiosa