Sequential sampling plans for estimating density of glassy-winged sharpshooter, Homalodisca vitripennis (Hemiptera: Cicadellidae) on citrus

Text - scientific article/review article

Description

The glassy-winged sharpshooter, Homalodisca vitripennis (Germar), is a serious pest of grapes and other crop and ornamental plants mainly through its role as a vector of the bacterium Xylella fastidiosa Wells. Citrus harbors large populations of this insect throughout much of the year in areas where the pest is problematic and improved understanding of the population dynamics and management of H. vitripennis on citrus may be key to its management in the broader agricultural landscape. In turn, the study of population dynamics and the development of management strategies require effective and efficient sampling methods. Within-tree sampling distribution studies revealed that adults and nymphs were more abundant and less variable in the upper strata of citrus trees (> 1.5 m). They occurred in greater numbers on the southern quadrants of trees but relative variability did not differ due to cardinal direction. We developed and validated several fixed-precision sequential sampling plans for estimating the density of nymphs and adults of H. vitripennis using a pole bucket sampling method. Based on validation from resampling of independent data sets, Green's sequential sampling model, based on the Taylor's power law, provided the best overall performance in terms of providing mean density estimates with levels of precision equal to or better than the desired precision over a range of possible insect densities. Average sampling costs varied from about 21 to 189 min for a desired precision of 0.25 depending on insect density and whether the goal is to sample nymphs, adults or both stages combined. Further, the sampling plans developed on orange trees were robust, being equally effective on orange and lemon trees and on trees treated or not with insecticides. Published by Elsevier Ltd.

License

no licence specified -

Organisms

  • Xylella fastidiosa