Comparative analysis of different molecular and serological methods for detection of Xylella fastidiosa in blueberry

Damien Griessinger 135 views
Text - scientific article/review article

Description

Bacterial leaf scorch, caused by Xylella fastidiosa, is a major threat to blueberry production in the southeastern United States. Management of this devastating disease is challenging and often requires early detection of the pathogen to reduce major loss. There are several different molecular and serological detection methods available to identify the pathogen. Knowing the efficiency and suitability of these detection techniques for application in both field and laboratory conditions is important when selecting the appropriate detection tool. Here, we compared the efficiency and the functionality of four different molecular detection techniques (PCR, real-time PCR, LAMP and AmplifyRP (R) Acceler8 (TM)) and one serological detection technique (DAS-ELISA). The most sensitive method was found to be real-time PCR with the detection limit of 25 fg of DNA molecules per reaction (approximate to 9 genome copies), followed by LAMP at 250 fg per reaction (approximate to 90 copies), AmplifyRP (R) Acceler8 (TM) at 1 pg per reaction (approximate to 350 copies), conventional PCR with nearly 1.25 pg per reaction (approximate to 440 copies) and DAS-ELISA with 1x10(5) cfu/mL of Xylella fastidiosa. Validation between assays with 10 experimental samples gave consistent results beyond the variation of the detection limit. Considering robustness, portability, and cost, LAMP and AmplifyRP (R) Acceler8 (TM) were not only the fastest methods but also portable to the field and didn't require any skilled labor to carry out. Among those two, AmplifyRP (R) Acceler8 (TM) was faster but more expensive and less sensitive than LAMP. On the other hand, real-time PCR was the most sensitive assay and required comparatively lesser time than C-PCR and DAS-ELISA, which were the least sensitive assays in this study, but all three assays are not portable and needed skilled labor to proceed. These findings should enable growers, agents, and diagnosticians to make informed decisions regarding the selection of an appropriate diagnostic tool for X. fastidiosa on blueberry.

License

no licence specified -

Organisms

  • Vaccinium myrtillus
  • Xylella fastidiosa

Files

File Size
external link 50,03kB